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In this study the evolution of initially homogeneous and isotropic turbulence in the 
presence of a free surface was investigated. The Navier-Stokes equations were solved 
via direct pseudo-spectral simulation with a resolution of 963. The Reynolds number 
based on the volume-averaged turbulence kinetic energy and dissipation rate was 147. 
Periodic boundary conditions were used in two dimensions, and the top and bottom 
sides of the domain were flat and shear-free. A random, divergence-free velocity field 
with a prescribed spectrum was used as the initial condition. An ensemble of sixteen 
separate simulations was used to calculate statistics. 

Near the surface, the Reynolds stresses are anisotropic and the anisotropy extends 
a distance from the surface roughly equal to the turbulent lengthscale. The tangential 
vorticity fluctuations also vanish near the surface, owing to the no-shear condition, 
causing a corresponding decrease in the fluctuating enstrophy. The thickness of the 
region in which the surface affects the vorticity distribution is roughly one-tenth the 
turbulent lengthscale. The stress anisotropy near the surface appears to be maintained 
by reduced dissipation for the tangential velocity fluctuations, reduced pressure-strain 
transfer from the tangential to surface-normal velocity fluctuations, and rapid decay of 
the surface-normal velocity fluctuations due to dissipation. The turbulence kinetic 
energy rises in the near-surface region owing to a decrease in dissipation at  the surface. 
This decrease in dissipation results from the local reduction in enstrophy owing to the 
vanishing of the tangential vorticity fluctuations at the surface. At the free surface, the 
mean pressure rises. This is also due to the reduction in  enstrophy. 

While the tangential vorticity must vanish at the free surface, the flow is fully three- 
dimensional up to the surface and the production of surface-normal vorticity by vortex 
stretching attains a maximum at the free surface. The contribution to the total 
enstrophy by the surface-normal vorticity fluctuations remains relatively constant over 
depth. The production of the surface-normal enstrophy component due to vortex 
stretching is roughly balanced by turbulent transport of enstrophy away from the 
surface. Near the surface, there are elevated levels of production of tangential vorticity 
by both vortex-stretching and fluctuating shear strains. 

1. Introduction 
Many situations of engineering interest result in turbulent flow of a liquid near a 

liquid- gas interface, a free surface. These flows include the near-surface layer of the 
ocean, a stirred fluid within a vessel, and many which occur in materials-processing 
procedures. At a free surface, the relative velocity between the fluid and the interface 
must vanish. In addition, the tangential stress at the surface must vanish, and the 
normal stress must balance the ambient pressure above the surface. As a result, when 
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a turbulent flow interacts with a free surface, the velocity field is significantly altered. 
For turbulent shear flows, the free surface alters the mean velocity as well as the 
turbulence. This can obscure the effects of the free surface on the turbulence. In this 
study we examine the evolution of shear-free, initially homogeneous turbulence near a 
free surface. In this way, the interaction of the turbulence with a free surface can be 
examined without the complicating effects of the mean-flow/free-surface interaction. 

In this study, the Navier-Stokes equations were solved via direct pseudo-spectral 
simulation with a resolution of 963. The computational domain was a cube 4.25L on 
a side, where L = l /Pz  is the turbulent lengthscale (here and B are the volume- 
averaged turbulence kinetic energy and dissipation rate). Periodic boundary conditions 
were used in two dimensions, and the top and bottom sides of the cube were flat and 
shear-free. A random, divergence-free velocity field with a prescribed spectrum was 
used as the initial conditions. The free-surface boundary conditions were applied to 
this initially homogeneous isotropic velocity field. An ensemble of 16 simulations was 
used to calculate turbulence statistics. The flow was examined at late times, after the 
effect of the boundary 'insertion' had diminished. At this time the turbulent Reynolds 
number (based on Z and &) was 147; the microscale Reynolds number was about thirty. 
The free surface is flat, which corresponds to the limit of either zero Froude number 
or zero Weber number (infinite gravity or surface tension, respectively). 

Various turbulent shear flows near free surfaces have been examined in recent years. 
Turbulent open channel flow, in which turbulence generated at a solid bottom wall 
interacts with the free surface, was examined by Lam & Banerjee (1988) and Handler 
et al. (1993), among others. Turbulent jets interacting with a free surface have been 
investigated by Swean et al. (1989), Anthony & Willmarth (1992), Madnia & Bernal 
(1994), Mangiavacchi, Gundlapalli & Akhavan (1994), Leipmann & Gharib (1994) and 
Walker, Chen & Willmarth (1995). Uzkan & Reynolds (1967) and Thomas & Hancock 
(1 977) examined homogeneous grid-generated turbulence interacting with a moving 
solid wall. (This flow has a homogeneous mean flow, but has a no-slip boundary 
condition at the wall rather than a vanishing-shear condition.) 

Shear-free turbulence near a free surface has been studied experimentally, 
numerically and theoretically. The early evolution of turbulence near a solid wall with 
zero mean shear has been considered theoretically by Hunt & Graham (1978). The 
relevant part of their analysis treats the boundary as shear free, and therefore is 
applicable to free-surface flows. They found that the tangential velocity fluctuations 
are elevated over a region roughly half the integral scale of turbulence, and the surface- 
normal fluctuations are reduced over a region which is about twice as thick. Their 
results indicated that there is a loss of energy from the low-wavenumber portion of the 
one-dimensional spectrum of the surface-normal velocity fluctuations. The gain in 
energy in the spectrum of the tangential velocity fluctuations occurs at higher 
wavenumber. At the surface, the turbulence kinetic energy is equal to that far from the 
boundary, but there is a small decrease in energy near the surface owing to the larger 
region of decreased w" relative to the thickness of the region where 2 is elevated. In 
contrast to those results, we will show that at late times the regions where the tangential 
and surface-normal velocity fluctuations are altered are of comparable thickness, and 
that the turbulence kinetic energy actually rises near the surface. The rise in kinetic 
energy results from a reduction in dissipation locally at the boundary, an effect which 
is not captured in the theory. 

Brumley & Jirka (1987) investigated a stirred fluid with zero mean velocity, 
generated by an oscillating grid below a free surface. Their results confirmed the 
occurrence of anisotropy near the surface, and they compared to the theoretical results 



ShearTfiee turbulence near a $?at free surjace 21 

of Hunt & Graham (1978). Their results were in approximate agreement with the 
theory for the stress anisotropy, although the comparison was complicated by the 
inhomogeneity of the oscillating grid flow in the direction normal of the free surface. 

Perot & Moin (1993, 1995) used direct numerical simulation to examine initially 
homogeneous turbulence near a flat bounding surface which was either a solid wall, a 
free surface, or a permeable membrane. They examined early times after the insertion 
of the boundary into an initially homogeneous and isotropic flow (the time after 
boundary insertion is roughly one-third of that examined in the present study), and the 
turbulent Reynolds numbers ranged from 6.2 to 134 (which approaches the value for 
the present study). Their conclusions regarding free surface flows were that the increase 
in the tangential velocity fluctuations at  the surface was a result of a local decrease in 
dissipation, and that the decrease in the surface-normal velocity fluctuations near the 
free surface is due to increased turbulent transport, including pressure transport. In 
addition, they concluded that the pressure-strain correlations, normally assumed to be 
the dominant mechanism for energy redistribution in the near-surface region, 
contributes little to the observed anisotropy. 

Perot & Moin discussed the near-surface energy redistribution in terms of two 
structures : the ‘ splat ’ which is comprised of fluid moving toward the free surface (after 
Bradshaw & Koh 1981) and the ‘anti-splat’ which they describe as regions of fluid 
ejecting downward, away from the free surface. They asserted that the net level of 
redistribution is determined by the balance between splats and anti-splats, and that this 
balance is set by viscous effects. In the case of a free surface (us. a solid wall or 
permeable membrane) they surmise that the splats and anti-splats are roughly in 
balance (owing to the lack of viscous effects which would result from a no-slip 
boundary), and so pressure-strain redistribution is relatively unimportant compared 
with other effects such as turbulent transport. 

In the present study, we find that the degree of anisotropy near the surface appears 
to be maintained, in part, by reduced dissipation for the tangential velocity fluctuations 
(as concluded by Perot & Moin), but also by the reduction in pressure-strain transfer 
from the tangential to surface-normal velocity fluctuations caused by the free surface 
and rapid temporal decay of the surface-normal velocity fluctuations. This latter effect 
is due to the fact that the surface-normal velocity fluctuations vanish at the surface, 
while their dissipation rate remains finite. The results of the present study also show 
that for the surface-normal velocity fluctuations, the pressure transport and the 
turbulent transport due to velocity fluctuations roughly balance and result in little net 
turbulent transport. In the discussion of the Reynolds-stress balances, presented below 
in $3.2.3 we argue that the net level of pressure-strain redistribution (and presumably 
the balance between splats and anti-splats) is affected by the local level of stress 
anisotropy. This is in addition to the role of viscous effects discussed by Perot & Moin. 

Gharib, Dabiri & Zhang { 1994) examined temporally decaying turbulence generated 
by a moving grid. On the basis of experimental measurements of the vector velocity 
field in planes parallel to the free surface, they concluded there was a region of quasi- 
two-dimensional turbulence near the free surface which is characterized by a reverse 
energy cascade, and vortex amalgamation leading to an enstrophy increase at the free 
surface. At some distance below the free surface, the turbulence becomes fully three- 
dimensional. The results of the present study indicate that, while the tangential 
vorticity must vanish at the free surface, the flow is fully three-dimensional up to the 
surface and that the production of surface-normal vorticity by vortex stretching (which 
is inconsistent with the idea of two-dimensional turbulence) attains a maximum at the 
free surface. The contribution to the total enstrophy by the surface-normal vorticity 
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fluctuations remains relatively constant over depth, which is in contrast to the results 
of Gharib et al. (1994). 

In addition to these results, we will show that the tangential vorticity vanishes in an 
extremely thin layer adjacent to the free surface. The vanishing tangential vorticity at 
the surface causes a reduction in the fluctuating enstrophy near the surface. This 
reduction in enstrophy is the root cause of the near-surface decrease in dissipation 
which leads to the increased turbulence kinetic energy mentioned above. The reduced 
enstrophy also causes an increase in the mean pressure near the surface. We also show 
that production of tangential vorticity fluctuations by vortex-stretching, and by the 
fluctuating shear strains, is significant near the surface, and can be related to different 
types of motions in the fluid. 

2. Computational method and calculation of the statistical quantities 
The results presented below were obtained via direct numerical solution of the three- 

dimensional time-dependent Navier-Stokes equations. Here, we discuss the com- 
putational method, how the simulation was initialized, the temporal decay of the 
turbulence, the initial conditions for the ensemble of simulations, and finally, how the 
statistics were calculated. 

2.1. Computational method 
The incompressible Navier-Stokes equations were solved using a pseudo-spectral 
method. In this scheme, which follows from Orszag & Patera (1983) and Kim, Moin 
& Moser (1987), the equations of motion are solved in rotational form by expanding 
the velocity field in a series of orthogonal functions. Elimination of pressure from the 
governing equations gives rise to a fourth-order partial differential equation for the 
surface-normal velocity and a second-order partial differential equation for the 
surface-normal vorticity. This formulation of the problem ensures that the continuity 
equation is satisfied at each timestep and, in this sense, it differs from other methods 
in which operator splitting is used. Chebyshev polynomials are used in the direction 
normal to the free surface and Fourier expansions are used in the two horizontal 
directions. A Chebyshev-tau approximation is used to solve the Poisson equations 
arising in the problem formulation. Crank-Nicholson time stepping is used for the 
viscous operator and the second-order Adams-Bashforth scheme is used for the 
nonlinear terms. 

The free surface is treated as a flat, shear-free boundary. Such a boundary occurs in 
the absence of atmospheric forcing and in the limit of zero Froude number and Weber 
number. The formulation of the problem requires two boundary conditions for the 
normal velocity and one condition for the normal vorticity on the top and bottom 
boundaries. Both boundaries are flat so the surface-normal velocity must vanish, i.e. 
w = 0. From the requirement of no tangential stress, and the definition of vorticity and 
continuity, the remaining conditions are a2w/i3z2 = 0, where z is the surface-normal 
coordinate, and aw,/az = 0, where w, is the surface-normal vorticity. In the 
homogeneous directions, the flow is assumed periodic. In post-processing the data to 
obtain the pressure field, Neumann pressure boundary conditions at the free surface 
were obtained from the surface-normal component of the Navier-Stokes equations. 

2.2. Initial conditions 
To generate useful statistical quantities, an ensemble of sixteen independent flows was 
calculated and the results ensemble averaged. A homogeneous isotropic velocity field 
was first established. The free-surface boundaries were then inserted and the velocity 
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field was allowed to evolve for a short time. The sixteen independent flows were then 
generated from this one. These flows were allowed to evolve for an additional period 
of time and formed the basis for the results presented below. 

The homogeneous isotropic velocity field was established by requiring that the initial 
velocity spectrum have a prescribed form and that the Fourier-transformed velocity 
field be random Gaussian variables. The approach is similar to that of Orszag (1969). 
The constraints of reality of the flow and continuity must also be satisfied by the initial 
conditions. The transformed velocity field is related to the spectrum by 

@ij(km) = udkm) uI(kr0 

where k, is the wave vector and k = (k,k,)’’’ .E(k) is the initial one-dimensional 
spectrum; for this case, the von Karma, spectrum was used (Hinze 1975, p. 244). To 
calculate the initial velocity field, Gaussian random fields (2, were scaled by the square 
root of the spectrum function and projected into divergence-free space : 

where (3) 

is the projection operator in Fourier space. This initial velocity field, determined on a 
uniform grid in physical space, was then interpolated onto the Gauss-Labatto grid in 
direction normal to the free surface. 

The choice of the initial spectrum defines lengthscales and velocity scales for the 
computation. For this simulation, the lengthscale was the initial integral scale (i.e. the 
integral of the longitudinal correlation function Rll(x1)) and the velocity scale was the 
r.m.s. velocity (the square of the r.m.s. velocity is two-thirds the turbulence kinetic 
energy). A computational time unit is the ratio of these two quantities. This timescale 
is used to describe the results in this section. The detailed presentation of the results in 
$ 3  uses the large-eddy timescale as defined below. 

In establishing this initial velocity field, no attempt was made to enforce the free- 
surface boundary conditions. As discussed by Perot & Moin (1993), the insertion of the 
free-surface boundaries so perturbs the flow that the timesteps must be extremely small 
in order to prevent numerical instability. This results in a fairly expensive calculation. 
To avoid this, a single simulation was allowed to evolve for five time units after 
boundary insertion. At this point in time, the effects of the boundary insertion (but not 
the effects of the free-surface boundary itself) have diminished, and the flow has 
evolved sufficiently long to be representative of homogeneous isotropic turbulence in 
the centre portion of the computational domain. 

This velocity field (which had evolved for five computational time units) was used to 
construct the initial conditions for the ensemble of sixteen flows used in calculating the 
statistics presented below. To generate the statistically independent velocity fields, the 
surface-normal velocity and vorticity were Fourier-transformed in planes parallel to 
the free surface (x,y-planes) and the each of the Fourier coefficients was multiplied 
by a different random complex number of unit magnitude (and different numbers were 
used for velocity and vorticity). This alters the phase of the complex Fourier coefficient. 
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The same random multiplier is used at all z-locations to ensure that the boundary 
conditions are satisfied by the new velocity field: 

fineu& k , ,  2) = fi0ld(kZ, k,, z ) /r(kz3 k J ,  (4) 

where r is a complex random number. The new ‘randomized’ velocity field is 
statistically independent of the initial generating field, but retains the spectrum of the 
generating field. These sixteen separate flows were then allowed to evolve for an 
additional five time units before the statistics were calculated. 

2.3. Turbulence decay 
Comparing the rate of decay of the simulated turbulent flow to recent theoretical 
predictions will verify that the isotropic region of the flow is self-preserving in 
character. Speziale & Bernard (1992), in studying the decay of self-preserving 
turbulence, developed an evolution equation for the turbulent Reynolds number and 
evaluated the fixed points of that equation. Two stable solutions exist depending on the 
initial palinstrophy coefficient G defined as : 

which is, as they noted, the ratio of turbulent to dissipative timescales. Their analysis 
indicated that for G > the turbulent Reynolds number 

Re,  = kz / v s  (6) 

would approach a non-zero constant. If G < the solution is Re, = 0. The two 
solutions also have different rates of decay of kinetic energy k - t rn:  For the low- 
Reynolds-number solutions, a = f is the rate of decay, while for the high-Reynolds- 
number solution they find a = 1. 

For comparison, the temporal behaviour of several volume-averaged parameters are 
shown in figure 1 (a) .  These include the volume-averaged turbulence kinetic energy k, 
the volume-averaged dissipation rate F, turbulent (or large-eddy) timescale T = E/e, 
and the turbulent lengthscale L. Data are presented for both the initial simulation 
(open symbols) and the simulations using the velocity field randomized at five 
computational time units (solid symbols). The time is normalized with the initial 
integral scale of the turbulence and the initial r.m.s. velocity, and t = 0 is the time of 
boundary insertion. The origin of time has been shifted by an amount to = 0.476 (this 
offset was chosen so that T increases linearly with time, as required by its definition). 
For the initial simulation, Re, is roughly constant. For the randomized flows, Re,  has 
decreased to approximately 147 and exhibits a weak decay. Also shown is the decay of 
turbulence kinetic energy. A least-squares fit of the rate of decay yields a = 1.088, very 
close to the constant-Reynolds-number, self-preserving fixed point solution determined 
by Speziale & Bernard (1992). There is a noticeable reduction in the kinetic energy 
immediately after randomization as the flow responds to the perturbation. The initial 
vale of Re,, L and Tare likewise shifted after randomization due to the reduction in 
$. After these transients, the temporal behaviour is the same as the unperturbed flow. 
This comparison indicates that the simulation behaves in a manner consistent with 
high-Reynolds-number self-preserving turbulence, even though the free-surface 
boundaries are present. 
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Whether the turbulence decays in a self-similar fashion (Re, = constant) or decays 
to zero, depends on the value of the palinstrophy coefficient. In this ensemble of 
simulations, during the time period for which statistics presented below were 
calculated, Re, = 147 and G“ = 5.44, where G” is the palinstrophy coefficient averaged 
over the entire volume. This is larger than the critical value off and indicates that the 
turbulence, in the absence of boundaries, would be self-preserving during this period. 

Another indicator of the self-preserving decay is the velocity-derivative skewness 
factor 

The velocity derivative skewness of the initial and randomized flows are shown in figure 
l(b). From the initial, unrandomized flow, it is apparent that the expected value of 
approximately 0.5 (Kerr 1985) is not reached until five computational time units have 
passed. For the randomized flows, the skewness converges quickly, possibly because 
the energy spectrum is not altered by the randomization process. For the period during 
which the statistics discussed below were calculated, the volume-averaged velocity- 
derivative skewness factor was s” = 0.501, again consistent with the behaviour of high- 
Reynolds-number homogeneous isotropic turbulence. Betchov (1 956) showed a 
connection between the skewness and the production of enstrophy. Since the skewness 
has converged to the expected value and is nearly constant, the proper production of 
enstrophy and nonlinear energy transfer has been re-established after the flow 
randomization. 

The one-dimensional energy spectrum, presented in figure 1 (c), provides an 
indication of the adequacy of the spatial resolution of the simulation. The spectrum is 
shown for times t = 5,  10 and 13. The results for t = 5 are prior to randomization of 
the flow, while the statistics presented below were calculated for roughly 10 < t 6 13. 
At t = 5, the spectrum has a range of nearly five decades in energy between the low- 
and high-wavenumber limits, indicating a well-resolved flow. At t = 10, the range has 
increased to about six decades and at t = 13 the resolution has increased further. 

2.4. Scaling 
For the flow examined here, a consequence of the nearly self-similar decay is the 
similarity of the temporal behaviour of the turbulent, or large-eddy, lengthscale L, the 
Kolmogorov lengthscale 7 = ( v ~ / s ) ~ / ~ ,  and the viscous lengthscale (vt)llz. The viscous 
lengthscale will in all cases increase in proportion to tliz. For the exact self-similar 
decay of Speziale & Bernard (1992) (i.e. a = l), L - tli2 and 7 - tliz as well. For the 
present simulations a = 1.088, but the temporal behaviour of the turbulent and 
Kolmogorov lengthscales are only slightly different from that of the viscous 
lengthscale : L - and 7 - to.52 . Similar results are obtained for the various 
timescales ; for exact self-similar decay, the various timescales increase in proportion 
to t. 

The above arguments can be extended to the boundary, at least for the tangential 
velocity. Kambe (1984) used an exact solution to the Navier-Stokes equations as a 
model for the interaction of two vortex rings in an axisymmetric collision. The plane 
of symmetry equidistant between the rings is similar to the shear-free free surface under 
consideration. Kambe showed that the lengthscale normal to the interface for the 
tangential velocity variations is 1 - ( V / S ) ” ~  where s is the rate of strain acting on the 
vortex. Regardless of the scaling assumed for s, we arrive at I - tliz which is consistent 
with any of the three possible length scalings. 
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As a result of the foregoing, we conclude that for the flow examined here, which 
decays in a nearly self-similar fashion, all candidate scalings for any of the phenomena 
observed are nearly equivalent, and no conclusions can be drawn relative to the 
appropriateness of one or the other scaling. We therefore use the turbulent, or large- 
eddy, lengthscale L exclusively in non-dimensionalizing distance from the free surface 
since, for the flow in question, this choice is as good as any other. This is not meant 
to imply that in other flows, undergoing non-self-similar decay (i.e. Perot & Moin 
1995) other scalings might not appear to be more useful. 

2.5. Calculation of statistical quantities 
The flow examined in this study is non-stationary and homogeneous only in planes 
parallel to the free surface. The statistics are, however, invariant under rotation in 
planes parallel to the free surface, and under reflection about planes normal to the free 
surface. The statistics are also invariant under reflection about the midplane of the 
computational domain (parallel to the free surface). 

For a given instant in time, statistical quantities were calculated by first averaging 
over planes parallel to the free surface. Secondly, the symmetry about the midplane of 
the computational domain was exploited by averaging together data at equal distances 
from either free surface. Thirdly, the invariance under reflection about planes normal 
to the free surface was used; this ensured that the mean velocities were zero. Finally, 
the rotational invariance (about an axis normal to the free surface) was used, by 
averaging results for the two tangential velocity components together. 

To improve convergence of the statistical quantities, the results from the entire 
ensemble were averaged over a short period of time. The averaging time was three and 
a half computational time units, which is equivalent to roughly half the large-eddy 
timescale (eddy ‘ turn-over ’ time) T = E / k s  at the time period in question. Based on an 
initial eddy ‘turn-over’ time 7;,, defined at f - z 0  = 1 (see figure l a ) ,  the averaging 
begins at t = 107;, and the data is averaged for 3.57;,. 

3. Results 
In the results presented below, mean quantities are indicated by an overbar (&), 

and root-mean-square (r.m.s.) quantities are designated using a prime (d, w’). In these 
results, x and y are the coordinates parallel (tangential) to the free surface and the 
respective velocities are u and 11. Since the turbulence statistics are invariant under 
rotation in planes parallel to the free surface, the x- and y-directions are 
indistinguishable. Therefore, unless otherwise noted, the x-component will be used to 
refer collectively to both tangential directions. The surface-normal direction is defined 
as the ;-direction, positive downward, with the origin at the free surface. This will be 
referred to as the vertical direction with velocity component w. 

In the profiles presented, the distance from the free surface is normalized with the 
turbulent lengthscale L = R3/‘ /2 ,  where and E are the turbulence kinetic energy and 
dissipation rate averaged over the computational domain. (As noted above, different 
candidate scalings cannot be distinguished, and so this will be used consistently.) With 
this normalization, the computational domain is a cube which is 4.25L on a side, and 
the centreplane of the domain is at z / L  = 2.125. As a result of the symmetry of the flow 
only the results for the upper half of the volume are shown. For this flow, Re,  = 147. 
In what follows, we present statistics related to the velocity, vorticity and pressure fields 
in 9 3.1. In 9 3.2, the various terms in the transport equations for the Reynolds stresses 
are then examined, followed by those for the turbulence kinetic energy equation. Terms 
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in the transport equations for the enstrophy and its component vorticity fluctuations 
are presented in 93.3. 

3.1. Statistical quantities 
3.1.1. Velocity field 

Figure 2 shows the r.m.s. velocities as a function of the vertical distance from the free 
surface. The r.m.s. velocities are normalized with a'''. For z / L  2 1.0, u' and w' are 
equal to within 5 %  r.m.s. The vertical component w' is consistently lower than the 
tangential component u'. This is the effect of the larger decay rate for w" near the 
surface and is discussed below in $3.2.2. As the free surface is approached, two distinct 
regions are evident in u'. First, u' gradually increases over the region 0.1 d z / L  d 1 .O. 
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There is a sharper rise near the free surface ( z / L  < 0.1). Over the range 0 6 z / L  6 1.0, 
there is a smooth decrease in w‘ to zero at the free surface. The slope of the w’ profile 
increases as the surface is approached. 

The r.m.s. velocities are not perfectly constant in the centre portion of the 
computational domain, but vary slightly. This is due mainly to the confinement of the 
turbulence between the two free surfaces in the computational domain. These 
variations are small and are judged to be acceptable; however, their effect will be seen 
in other statistical quantities presented below, particularly in the turbulent transport 
terms in the Reynolds-stress transport equations. 

The turbulence kinetic energy k normalized with k is shown in figure 3 .  The level of 
k is roughly equal to k over the entire domain, but rises slightly near the centreplane. 
There is a sharp increase of 15 % near the free surface ( z / L  6 0.1) which corresponds 
to the increase in u’. This increase can be related to the local reduction in dissipation 
which is caused by the requirement that the tangential vorticity vanish at the free 
surface, and will be discussed below. 

The anisotropy of the Reynolds stress describes the partitioning of energy among the 
fluctuating velocity components. It is also often used in the modelling of turbulence. 
The anisotropy tensor aij is defined by Newman & Lumley (1977) as 

For isotropic turbulence, aij = 0. Figure 4(a) shows the anisotropy for the tangential 
velocity fluctuations auu. (The anisotropy for the surface-normal fluctuations is 
uww = -2a,,.) Far from the surface, the anisotropy is slightly non-zero, owing to the 
small difference between u’ and w’. For z / L  6 1, the anisotropy increases as the 
free surface is approached, reaching the limiting value of + at the surface. Except for 
very near the surface, the slope of auu increases as the free surface is approached and 
two regions are again evident - a region of slow increase for 0.2 6 z / L  6 1, and a 
region of more rapid increase for z / L  < 0.2. In the combination of u’ and w’ embodied 
in the anisotropy auu the region of sharp increase in u’ and k ( z / L  < 0.1) is not in 
evidence; there is now a broader region of rapid increase, z / L  < 0.2, which is a result 
of the smoother behaviour of the w’ velocity. 

The invariants of the anisotropy tensor aii can be used to examine the nature of the 
turbulence as it approaches the free surface. Since aij has zero trace (by definition), the 
second and third invariants are all that are required. The second invariant is defined 
as 

A ,  = aijaj i  (9) 

and is positive definite. In homogeneous, isotropic turbulence, it is zero, and when one 
r.m.s. velocity vanishes and the other two are equal (as occurs at the free surface), it 
has a value of g. The third invariant of aij is 

A ,  = aijajkaki 

A ,  is negative for the case of two equal r.m.s. velocities which are larger than the third, 
with a limiting value of -; when the third component vanishes. 

Plots of these invariants versus distance from the free surface are shown in figure 
4(b). Far from the surface z / L  > 1, both invariants are zero, indicating nearly isotropic 
behaviour. The second invariant A ,  captures the gradual increase in anisotropy for 
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FIGURE 4. Profiles of Reynolds-stress and dissipation anisotropy and invariants of the Reynolds stress 
anisotropy tensor: (a) Reynolds-stress and dissipation anisotropy ; 0, auu = - 2a,,; , euu = - 2e,,; 
(b) invariants of the Reynolds stress anisotropy tensor; ., A , ;  0,  A , ;  A, 1 -g(A2-A,) (‘flatness’ 
factor). 

0.2 < z / L  < 1 and the sharp increase for z / L  < 0.2. The third invariant A ,  appears to 
capture primarily the sharp increase in anisotropy for z / L  < 0.2. Both invariants attain 
their respective limiting values at the surface. Also shown in figure 4(b) is a ‘flatness’ 
factor often used in turbulence modelling to capture anisotropic behaviour (see e.g. 
Launder 1990). This factor is defined as 1 -;(A,--A,).  Since, at the surface, A ,  - A ,  = 0 
and, far from the surface, A ,  and A ,  are both zero, the flatness factor will vary from 
zero at the surface to unity far from the surface in a manner which reflects the 
anisotropy of the turbulence. This factor is equal to one for z / L  2 1 .O and exhibits the 
same two regions seen in A ,  and auu. In using these invariants to control the modelling 
of near-surface effects, it is clear that the ‘flatness’ factor reflects the anisotropy which 
exists at all the locations; A ,  does this somewhat less well, while A ,  reflects mainly the 
‘strong’ anisotropy which exists for z / L  < 0.2. 
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FIGURE 5 .  Profiles of the Taylor microscales, normalized with L ;  0, A,, the longitudinal microscale; 
0, A,,, the lateral microscale associated with the u velocity; 0, A,,., the lateral microscale associated 
with the w velocity. 

3.1.2. Lengthscales 
The Taylor microscale can be defined as 

where there is no summation on repeated indices (see e.g. Hinze 1975, p. 41). Here, x3 
denotes a direction in which the turbulence is homogeneous (the surface-parallel 
direction x for the flow in question) and u, can be any component of the velocity. For 
i = j ,  the longitudinal correlation A, is obtained. For i + j ,  the lateral correlations 
associated with the surface-normal and surface parallel velocities, Agu, and ASV, 
respectively, are obtained. These scales represent the scale on which longitudinal 
straining occurs (A,) and the scales associated with the normal and tangential 
components of vorticity (AgV and hgw, respectively). 

Figure 5 shows profiles of all three lengthscales normalized with L. Far from the free 
surface, the two lateral microscales, A,, and A,,,, are equal and the longitudinal 
microscale A, is consistently larger, as would be expected in homogeneous isotropic 
turbulence. (For homogeneous isotropic turbulence, A, = 2/ 2A,; Hinze 1975, p. 188.) 
As the free surface is approached, A, increases by 10-15 % to a maximum at z / L  z 0.1. 
- This is due to the increase in 2 near the boundary. For z / L  < 0.1, A, decreases. Since 
u2 increases in this region, this indicates that the extensional strain au/C?x has increased 
significantly near the surface. The lateral microscale associated with the w velocity A,, 
decreases by roughly 30% as the surface is approached. While both w" and the 
fluctuating ?w/c?x velocity gradient go to zero at the surface, the associated lengthscale 
remains finite. The lateral microscale associated with c, A,?,, increases by about 30 YO 
at the boundary. This is mainly due to the increase in the tangential velocity 
fluctuations. 
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FIGURE 6. Profiles of r.m.s. vorticity and enstrophy; (a) r.m.s. vorticity normalized with F/k ;  

0, G J ~ ;  0, w:; (6) enstrophy tqiq normalized with S/kz. 

3.1.3. Vorticityfield 
The root-mean-square vorticity is shown in figure 6(a) .  The vorticity is normalized 

by the inverse of the turbulent timescale t?/k The tangential component, o;, is zero at 
the free surface, owing to the imposed boundary conditions. The level of wk rises 
sharply over the range 0 < z / L  d 0.10 and peaks at z / L  = 0.2 before decreasing 
slightly and becoming constant for z / L  2 0.8. The region of increase is roughly half a 
lateral microscale thick. The r.m.s. surface-normal vorticity wk is also shown in figure 
5. This component is constant for z / L  2 0.4 (and is equal to 0;: for z / L  2 0.8) but 
decreases by 10% as the free surface is approached. 

The enstrophy, defined as $qqwi, is shown in figure 6(b), where it has been 
normalized by the (Z/k)'. The enstrophy has a minimum at the free surface and rises 
sharply over the region z / L  < 0.10. There is a broad maximum at z / L  z 0.28, followed 
by a small decrease (5-10%); the enstrophy then becomes constant for z / L  2 0.8. 

The Reynolds stress term appearing in the Reynolds-averaged form of the 
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Navier-Stokes momentum equations (the RANS equations) can be written in 
rotational form (Hinze 1975, p. 568) 

where wi is the fluctuating vorticity. (Here, eijk is the alternating unit tensor, used to 
form the vector cross-product between the fluctuating velocity and vorticity.) The 
second term on the right of (12) is the gradient of the dynamic pressure associated with 
the turbulent fluctuations - the turbulence kinetic energy. The first term on the right- 
hand side of (12) is a non-potential body force resulting from translation of a material 
particle in a direction normal to the local vorticity vector; the resultant body force is 
normal to both the vorticity and the direction of translation - a 'lift '  force acting on 
the fluid. 

For homogeneous isotropic turbulence, the vorticity and velocity will be uncor- 
related. Even in more complex flows, the vorticity and velocity fluctuations remain 
only weakly correlated since the lengthscales for the vorticity fluctuations are typically 
much smaller than those for the velocity fluctuations (see Tennekes & Lumley 1972, 
p. 81). A boundary such as a free surface can cause the vorticity and velocity fluctu- 
ations to become correlated. The requirement that 11' vanish at the surface causes the 
surface-parallel vorticity component at a point to induce a local surface-parallel 
velocity which is normal to the local vorticity vector. This velocity is such that the 
local value of the associated velocity-vorticity correlation term (eijk = UO,-VW,) 
will be negative for z positive downward (see Walker et al. 1995). At the free surface, 
the correlations must vanish since the tangential vorticity does. For large distances 
from the surface, the induced velocity will be reduced (for a potential vortex, it would 
decrease roughly as z-'). Hence, near a free surface one would expect to find a 
negative peak in the correlation between orthogonal components of the tangential 
velocity and tangential vorticity. Significant correlation between the fluctuating 
velocity and vorticity indicates that the interaction of the vorticity with the free surface 
is sufficient to affect the Reynolds stress field. 

Figure 7 shows the velocity-vorticity correlation u(l)y for this flow. The correlation 
is negligibly small over the centre 50% of the computational domain and becomes 
negative near the free surface. At the free surface, is zero. It then rises sharply in 
magnitude to a peak at z / L  z 0.05 and drops slowly to near zero at z / L  z 1.0. Also 
shown in figure 7 is the correlation coefficient for the velocity-vorticity correlation 

The correlation between the velocity and vorticity fluctuations has a maximum of 
R,,,, = 0.3 at z / L  = 0.04. This level remains relatively constant over the near-surface 
region where the pronounced drop in OIL occurs, and then decreases to zero at the free 
surface. This indicates that the decrease in the velocity-vorticity correlation can be 
attributed to the decrease in w', which occurs as a result of the no-shear condition at 
the free surface. Except for very near the surface, the degree of correlation increases as 
the surface is approached, as would be expectcd for vorticity interacting with a w = 0 
boundary. This significant degree of correlat Ion indicates that vorticity/free-surface 
interaction modifies the Reynolds stress field iiear the surface. 
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FIGURE 7. Profiles of velocity-vorticity correlations normalized with .?//f1I2 and correlation 

coefficient, 0, ii6&; 0, R,, = iiGJu'o~i. 

3.1.4. Pressure jield 
The pressure field near the surface is very important in free-surface flows. Not only 

does the pressure contribute to transport of turbulent stress and redistribution of 
energy, but, in non-zero-Froude-number flows, it generates surface waves. Here we 
examine the mean and r.m.s. pressure and formulate the Poisson equation which 
governs the pressure field. Examination of these gives an indication of the types of 
motions in the flow which result in the observed pressure field. 

Figure 3 shows the mean pressure P/p and root-mean-square pressure p ' / p ,  both 
normalized with k". (The pressure is the only quantity in this flow for which the mean 
is non-zero. Therefore we will use P to denote the instantaneous pressure, P to denote 
the mean pressure, and p to denote fluctuations relative to the mean.) The mean 
pressure P / p ,  which is related to w" through the mean vertical momentum equation, 
mirrors the behaviour of 2. It is relatively constant over the centre portion of the flow, 
and rises for z / L  < 0.5. The rise near the surface is about 0.5 f .  The r.m.s. pressure is 
relatively constant at about 0.7 6. 

The observed behaviour in the pressure field near the surface can be explained by 
examining the governing Poisson equation for the pressure. This equation is obtained 
by taking the divergence of the Navier-Stokes equations. This procedure results in: 

a 2  P - aujaui 
ax;p axiaxj 
_ _  - -__ 

= -Axi). 
Each velocity gradient term on the right-hand side of (14) can be decomposed into 
symmetric and anti-symmetric parts (irrotational strain and rotation). After some 
manipulation, the resulting equation is 

where 
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FIGURE -~ 8. Source terms in the Poisson equation for the mean pressure, normalized with P / k 2 ;  0 ,  
f =  S t j S j , - i v d ,  m. A, -$-; D, normal-strain component of m; 4, shear-strain 
component of Sti S,,. 

is the irrotational strain-rate tensor. The two source terms on the right-hand side of 
(15) are, respectively, the second invariant of Sii, a measure of the magnitude of the 
instantaneous irrotational strain field, and the enstrophy, a measure of the magnitude 
of the instantaneous rotation at a point. Equations (14) and (15) can be inverted to 
yield expressions for the pressure field in terms of a weighed volume integral of the 
source terms (Greenberg 1971, p. 112). The appropriate solution is 

where G ( x , , x ~ )  = - ~ 

471: 1 (  Ix; - x i /  + ]xi* - x i [ ,  
is the Green’s function. Here, the second term in (18) represents integration over the 
velocity field reflected in the plane of the free surface, and is included to satisfy the 
condition aP/c’;z = 0 at z = 0. Taken together, (17) and (1 8) indicate that the pressure 
at a point is influenced by the entire velocity field, but mainly depends on the 
magnitude of the source term f in the immediate vicinity of that point. Hence, by 
examiningfwe can gain some insight into the mechanisms which influence the pressure 
field in this flow. In the decomposition of the source term shown in the second line of 
(1 7), both of the terms are positive definite and so (17) indicates that an instantaneous 
increase in the strain rate will cause an increase in the pressure, while an instantaneous 
increase in the enstrophy will cause a decrease in P. 

If we average (17) we can see that the mean pressure is determined by the means of 
the source terms. Figure 8 shows the local mean value of the source terms from (17) 
versus distance from the surface. The mean of the entire source termfis constant and 
near zero for z / L  3 0.5. As the surface is approached,ffirst decreases slightly and then 
rises sharply for z / L  d 0.1. The rise infnear the surface is responsible for the increase 
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in the mean pressure there. Comparison to the mean pressure (figure 3) shows that the 
influence of the rise infnear the surface affects the entire near-surface region, out to 
z / L  M 0.4 and beyond, owing to the Green’s function in (17). Figure 8 also shows the 
means of the terms which comprise f. The first term Sii Sj,  is relatively constant for 
z / L  2 0.5, and varies only slightly as the surface is approached. This term can be 
decomposed into contributions from fluctuations in the shear strain rate, the portion 
of Sij Sji for i += j ,  and fluctuations in the normal strain rate, the portion for which i = j .  
Near the surface, large normal strain rates result from stagnation-type flow (‘splats’ or 
‘anti-splats’, in the parlance of Bradshaw & Koh 1981 and Perot & Moin 1993), a 
consequence of the w = 0 condition at the surface. The fluctuations in the shear strain 
rate can be expected to decrease near the surface owing to the no-shear condition. 
These effects roughly offset each other and, as a result, there is no net change in the 
mean pressure resulting from the irrotational strain. The second term -iqq is equal 
in magnitude to Sij Sji for z / L  2 0.5, but increases sharply for z / L  < 0.1. This 
reduction in the fluctuating enstrophy, a change in the rotational part of the flow, is 
responsible for the observed increase in the mean pressure at the free surface. 

3.2. Reynolds-stress and turbulence-kinetic-energy balances 
Transport equations for the elements of the Reynolds stress tensor w can be derived 
from the Navier-Stokes equations (see e.g. Hinze 1975, p. 323). For a flow with zero 
mean velocity the equations have the following form 

I I1 I11 IV V 

(19) 
where term I represents time-rate-of-change of at a point in the flow, I1 represents 
transport of q q  due to turbulent velocity and pressure fluctuations, I11 (the 
pressure-strain correlation) represents inter-component energy redistribution due to 
interactions between the fluctuating pressure and strain fields, IV represents loss of m 
due to viscous dissipation, and V represents viscous diffusion of a&. For the flow in 
question, which is homogeneous in planes parallel to the free surface, the mean 
gradients in the surface-parallel directions vanish and = 0 for i i j .  This results in 
the following equations for the non-zero Reynolds stresses. For the 2 Reynolds stress 
(involving surface-tangent velocities) (1 9) reduces to 

I I1 I11 IV V 

and for the surface-normal velocity fluctuations, the 2 equation is 

%-J-++- 
1 11 111 TV V 
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FIGURE 9. Terms in (20), the transport equation for the 2 Reynolds stress, normalized with c ;  0, time 
rate-of-change (term I); 0, turbulent transport (term 11); A, pressure-strain correlations (term 111); 
V, dissipation (term IV); D, diffusion (term V); -, sum of terms IILV. 

Half the contraction of (19) is the turbulence kinetic energy equation 

I I1 111 IV V 

where k' = fu? u,. In this expression, the pressure-strain correlations vanish owing to 
their redistributive nature, but the interpretation of the other terms is unchanged. 

In the following sections, the terms of the Reynolds-stress balances are normalized 
with the volume-averaged dissipation rate 2. The terms are plotted against z / L .  Since 
the flow is undergoing nearly self-similar decay (Speziale & Bernard 1992), the large 
eddy, viscous and Kolmogorov lengthscales all grow as F2. As noted earlier, the 
similarity of the temporal behaviour of the various lengthscales precludes any 
determination regarding the appropriate lengthscale for use in normalization, and no 
assertions about the proper normalization are made. 

3.2.1. Terms of the Reynolds stress balance for u" 
The terms appearing in (20), the balance of the u" Reynolds stress, are shown in 

figure 9. All terms are normalized with the volume-averaged dissipation rate g. The 
dominant term in this temporally decaying turbulence is term IV, loss due to viscous 
dissipation, which is relatively constant at 0.70-0.75 Z for z / L  3 0.2. The loss due to 
dissipation decreases rapidly as the free surface is approached to a level of 0.45 C at the 
free surface. Diffusive transport (term V) is very small for z / L  3 0.2. For z / L  d 0.2, 
there is a local gain in u" through diffusion which increases to a peak of 0.22 at 
z / L  = 0.1 followed by a sharp decline as the free surface is approached. Very near the 
surface, there is a loss of u" through diffusion with the maximum loss occurring at the 
surface. This is nearly twice the loss of 2 owing to dissipation at the surface. This 
indicates that diffusion transports u" from very near the surface to the region 
z / L  6 0.2. Transport of u' by turbulent velocity fluctuations (term 11) causes a loss of 
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FIGURE 10. Terms in (21), the transport equation for the f Reynolds stress, normalized with I ;  0, 
time rate-of-change (term I) ; 0, turbulent transport (term 11) ; A, pressure-strain correlations (term 
111); 0, dissipation (term IV); D, diffusion (term V); -, sum of terms 11-V. 

- 
u2 from the near-surface region; the maximum loss is roughly 0.4 F at z / L  = 0.06. In 
general, the turbulent transport causes loss of u" from regions where it is elevated, and 
gains where it is lower, relative to the surroundings. As a result, this quantity reflects 
the subtle variations in the u' profile seen in figure 1. Redistribution of energy from w" 
to 2 (and vice versa) through interaction of the fluctuating pressure and strain fields 
is embodied in the pressure-strain correlations (term 111). At the surface, there is a 
small positive contribution (0.05 3 to 2, indicating that transfer from w" to u" occurs 
at the surface. Further from the surface, down to z / L  z 0.7, the pressure-strain 
correlation is consistently negative, with a broad maximum of roughly 0.1 Z, more than 
twice the magnitude of the limiting value at the surface. In this deeper region the 
pressure-strain correlations serve to reduce the difference between 2 and u" (i.e. they 
promote a 'return' to isotropy); whereas, in a small region at the surface they increase 
the difference. Far from the surface z / L  2 0.5, the pressure-strain correlation is 
slightly negative, owing to the slight anisotropy in this region. 

The sum of terms 11-V, and the time derivative of u" (term I), are also shown; these 
agree well across the entire flow. For z / L  2 0.6, the time-rate-of-change for 2 is due 
primarily to viscous dissipation, with a small contribution from turbulent transport. 
For z / L  < 0.6, the rate-of-change becomes more negative owing mainly to press- 
ure-strain redistribution. Near the surface, losses due to diffusion and turbulent 
transport contribute to a rapid decrease near the surface, with diffusion dominating at 
the free surface. 

3.2.2. Terms of the Reynolds stress balance for 7 
The terms of the balance for the Reynolds stress associated with surface-normal 

velocity fluctuations 2 (equation (21)) are shown in figure 10, again normalized with 
F. As with 2, the balance of 7 is dominated by dissipation (term IV) for z / L  2 0.3. 
The level of dissipation is similar to that for u",0.7 F. As the surface is approached, the 
dissipation rate decreases by 50 O/O and is constant very near the surface. At the surface, 
the loss of 2 through dissipation is exactly balanced by gain due to diffusion; however, 
these two effects result in a net loss of w" in the near-surface region. For z / L  2- 0.10, 
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FIGURE 11. Inverse decay timescales for G-and Tcnormalized with E / & ;  0, (@/?t)/?; 
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there is no significant contribution to w" owing to diffusion. Turbulent transport of 2 
(term 11) is small in magnitude, but makes a slight positive contribution near the 
surface, and a slight negative contribution farther from the surface. (Actually, the 
pressure transport and the transport due to velocity fluctuations roughly offset one 
another for z / L  < 0.2. The latter causes a gain in IG" while the former results in a 
decrease - each with a magnitude of 0.35-0.40 at z / L  z 0.1). The pressure-strain 
correlation term (111) is twice that for u' and is of opposite sign, as expected. At the 
surface, there is a small loss of M.' resulting from transfer of energy to 2. Further from 
the surface, there is transfer of energy from u' to 7, reflecting the anisotropy of the 
Reynolds stresses. The loss of M?" at the surface owing to pressure-strain redistribution 
is exactly balanced by the gain due to turbulent transport. This, coupled with the 
- balance between dissipation and diffusion at the surface, results in zero net change in 
w-' at the surface. The time-rate-of-change (term I) increases in magnitude with 
increasing depth until it matches the dissipation rate for z / L  3 1.1. Nearer the surface, 
the time-rate-of-change is less than the dissipation rate owing to contributions to u." 
from the pressure-strain correlations. 

These results are largely consistent with the results of Perot & Moin (1993). They 
showed that, near the surface, pressure transport and transport due to velocity 
fluctuations nearly balance, yielding little net turbulent transport. The pressure-strain 
term trend shown for early time ( t / &  < 3) in Perot & Moin (1993) is consistent with 
the results in the present study (t/q > 10). In their results, the pressure-strain 
correlation at the surface is negative and getting smaller in magnitude with increasing 
time. Further from the surface, there is a positive maximum which is increasing in time. 

3.2.3. Discussion o j  the Reynolds .stress balances 
To gain further insight regarding the temporal decay of both Reynolds stresses, we 

can examine the time-rate-of-change of a given stress, normalized with the local value 
for the stress. This quantity can be thought of as a decay rate, or an inverse timescale, 
for the stress. The results for u" and w" are shown in figure 11, normalized with the 
inverse turbulent timescale E l i .  Across the entire flow, the decay rate for 3 is roughly 
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constant and equal to Z/k. This indicates that, for short times at least, the u" profile will 
decrease in magnitude, but maintain its shape (i.e. it will exhibit self-similar behaviour). 
For w", the decay rate is roughly equal to E/k for z / L  2 0.4, but for the region closer 
to the surface, the decay rate is larger, reaching at the surface a level more than 60 % 
larger than Z/k. This indicates that, far from the surface, w" will decrease at the same 
rate as 2 but near the surface, w" will decrease much more rapidly than 2. 

The transport terms in (20) and (21), in large part, reflect the variations in the 
associated Reynolds stress; i.e. they respond to the changes in the stress profile caused 
by the boundary conditions or the action of the source terms. The source terms which 
affect the near-surface balance of the turbulent stresses are pressure-strain re- 
distribution and viscous dissipation. Viscous dissipation decreases near the surface for 
both u" and 2, but remains at finite levels. For w", the fixed level of dissipation near 
the surface, where w" decreases to zero, contributes to the large decay rates for this 
stress near the surface shown in figure 11. For u", the reduced dissipation near the 
surface contributes to the observed increase in u" near the surface. 

The pressure-strain redistribution can be understood as follows : the primary effect 
- of the surface, though the w = 0 condition, is to cause a transfer of energy from ?- to 
u2, via the pressure-strain correlations, as a result of the direct interaction of the flow 
with the boundary. However, pressure-strain redistribution of energy from u" to 2 will 
occur if u" is substantially larger than 2 (i.e. the transfer from u" to w" is driven by the 
local anisotropy; this is true anywhere in the flow, including near the free surface). 
Hence, there is a secondary effect of the boundary: the initial redistribution caused by 
the boundary increases 3; the resulting anisotropy causes redistribution from u" to w". 
'Superposition' of these two effects is evident in the results presented above. The 
anisotropy increases monotonically as the free surface is approached. The observed 
redistribution from u" to w" increases as the anisotropy increases until z /  L FZ 0.1. Then 
- it decreases, changing sign very near the surface. This near-surface reduction in u" to 
w 2  redistribution, in a region of increasing anisotropy, is the effect of the free-surface 
boundary. 

This scenario is evident in the results of Perot & Moin (1993), which show that just 
- after boundary insertion, but before the u" increases significantly, there is substantial 
w 2  to u" redistribution at the surface. As time proceeds, and the anisotropy near the 
surface increases (i.e. as u" increases), the level of w" to u" redistribution decreases. 

Hence, we can conclude that the observed behaviour of the Reynolds stresses near 
the surface results from the reduced dissipation of u", the large decay rate in w" caused 
by dissipation, and the net transfer of energy between w" and u" through pressure-strain - -  
redistribution. The effect of the surface is to cause transfer of energy from w2 to u2, but 
this is balanced by transfer from u" to w" caused by the resulting anisotropy. This is 
consistent with Perot & Moin's (1995) conjecture that the level of pressure-strain 
redistribution is determined by the balance of 'splat ' events and 'anti-splat' events; 
however, here we propose that the balance is controlled by the local anisotropy for 
free-surface flows. The role of viscous effects is not clear. (This assumes that their 
conceptual model is correct.) 

This behaviour affects the temporal evolution of the flow. For 2, an 'equilibrium' 
develops where diffusion and turbulent transport rates adjust to the levels of 
dissipation and redistribution and 2 decays on a similar timescale at all locations. The 
rapid decay of w" near the surface is 'fed' primarily by diffusion of 2 to the near- 
surface region, and by transfer of energy from u" to w". Diffusion of w" to the surface 
causes the observed anisotropy of the stresses in the centre portion of the computational 
domain. A further implication of the different decay timescales, is that turbulence near 
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a free surface cannot decay in a completely self-similar fashion. This may explain the 
slightly larger decay exponent for the volume-averaged turbulence kinetic energy 
(a  = 1.088 us. 3 = 1) discussed above in $2.3. 

3.2.4. Dissipation anisotropy 
Many recent attempts at modelling turbulence near a solid boundary (see e.g. 

Hanjalic & Launder 1976) and near free surfaces (Swean et al. 1991 ; Miner, Stewart 
& Swean 1993) have recognized that the dissipation rates for the individual stresses 
differ. The dissipation rate (term IV of equation (8)) is defined as 

Conventional approaches to modelling assume that the dissipation is 'isotropic' 

6 . .  = 2&..s 
? I  3 13 

where E = &if .  The anisotropy of the dissipation rate for the Reynolds stresses can be 
quantified using an anisotropy tensor, similar to that used above in $3.1.1 for the 
Reynolds stresses (figure 3). This dissipation anisotropy tensor is defined as 

and, as such, is a measure of the deviation of the dissipation rates for the individual 
stresses from the assumption of isotropic dissipation. 

Figure 3 shows the anisotropy of dissipation for u", along with the anisotropy of the 
Reynolds stress. (Note that, as with the Reynolds stress anisotropy, the surface-normal 
component is twice the negative of the surface-parallel component.) For z / L  3 0.75, 
the anisotropy in dissipation is negligible. The anisotropy increases gradually as the 
free surface is approached. For z / L  6 0.2, there is a rapid increase to a peak at 
z / L  = 0.04, followed by a monotonic decrease to the surface. The behaviour of the 
anisotropy of dissipation is very different from that of the stresses themselves, both 
qualitatively and quantitatively. The maximum magnitude of the anisotropy of 
dissipation is roughly half that for the stresses, and the maximum anisotropy for 
dissipation occurs at z / L  = 0.04, while for the stresses, the maximum occurs at the 
surface. 

3.2.5. Turbulence kinetic energy balance 
The terms in the transport equation for the turbulence kinetic energy are shown in 

figure 12(a). Again, dissipation (term IV) is the dominant term and is roughly equal to 
E for z / L  3 0.2. The dissipation decreases slowly as the surface is approached to 0.9 E 
at z / L  = 0.04 and then drops sharply to 0.6 C at the surface. Diffusion (term V) causes 
a loss of k in the immediate near-surface region, primarily owing to the diffusion of u" 
away from the surface. For 0.04 6 z / L  6 0.2 there is a local gain in k owing to 
diffusion, again reflecting the behaviour of u", while for z / L  3 0.2 diffusion is 
negligible. Near the surface, turbulent transport (term 11) causes a loss in k with a peak 
of 0.4; at z / L  = 0.04. Further from the surface, turbulent transport is small in 
magnitude and reflects the small variations in the turbulence kinetic energy profile. The 
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FIGURE 12. (a) Terms in (22), the transport equation for the turbulence kinetic energy k ,  normalized 
with 0; 0, time rate-of-change (term I); 0, turbulent transport (term 11); V, dissipation (term IV); 
D, diffusion (term V); -, sum of terms 11-V. (6) Decomposition of the dissipation; 7, dissipation 
(term IV); 0,  v s i , .  ., $ v w .  

time-rate-of-change in k (term I) reflects the dissipation rate and the turbulent 
transport for regions far from the surface ( z / L  2 0.2). Very near the surface diffusion 
causes an increase in the magnitude of the time derivative. In the intermediate region, 
gains in k owing to diffusion are offset by losses resulting from turbulent transport. If 
k were constant, the large losses at the surface owing to diffusion would vanish; hence, 
the peak in k at the surface results from the reduced level of dissipation. 

Figure 12 (b) shows the dissipation rate term decomposed into potential strain and 
rotational contributions : 

€ = V(Sij sji + ;qq). (26) 

From the figure it is clear that the reduction in dissipation at the surface is mainly due 
to the decrease in enstrophy at the surface. 
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3.3 .  Fluctuating enstrophy balance 
The shear-free boundary condition specified in this simulation allows vorticity normal 
to the free surface, but the tangential vorticity must vanish at the surface. The physical 
manifestations of this boundary condition are the attached vorticity distributions 
observed in free-surface experiments (Madnia & Bernal 1994; Walker et al. 1995). The 
interaction of the vorticity field with ~ the boundary can be studied using the balance 
equations for the total enstrophy fw iw i ,  and those for the tangential and surface- 
normal components, and 2. 

The balance equations are derived in the same manner as the balance equations for 
the components of the Reynolds stress tensor. The details of the derivation of the 
balance equation for the fluctuating enstrophy are contained in B a h t ,  Vukoslavcevic 
& Wallace (1988). The enstrophy balance equation for a flow with zero mean velocity 
is 

I I1 I11 IV V 

with an implied summation on i for the total fluctuating enstrophy iwwi, and no 
summation for the components of enstrophy. According to Tennekes & Lumley (1972) 
and B a h t  et al. (1988), the terms of the enstrophy balance equation have the following 
interpretation: the local rate of change of the enstrophy (term I), transport of 
enstrophy by fluctuating velocity (term TI), production by turbulent fluctuations (term 
111), viscous dissipation (term IV), and viscous diffusion (term V). 

The production terms (111) are different in character from any terms which were 
examined in the Reynolds stress transport equations above. The velocity gradient 
tensor in term 111 of (27) can be decomposed into symmetric and antisymmetric parts 
to yield 

____ 
c’u. ___ ~ 

O . Q . 2  = w . w . s . . - + w . w .  z 1 ti a I w. 11’ 
“Xj 

where Sij is the strain-rate tensor, defined in (16) above, and 

is the rotation-rate tensor. The quantity wj  K j  is identically zero (it reduces to the cross- 
product of the vorticity with itself) and so (28) reduces to 

Hence, the production terms represent interactions between the vorticity field and the 
fluctuating irrotational strain field. For i = J  in (30) the terms are usually referred to 
as ‘vortex-stretching’ terms since they involve the normal strain rate. For i =+ j ,  they are 
often called ‘vortex-tilting’ terms. Since the term involving the rotation rate tensor K j  
vanishes, there is no inter-component transfer of vorticity owing to the rotation of the 
vorticity vector owing to local fluid rotation. 

The ‘stretching’ and ‘tilting’ terms are actually different manifestations of the same 
process. If we consider vorticity components resolved into a coordinate system aligned 
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FIG_URE 13. Terms in (31), the transport equation for the fluctuating enstrophy iwi, normalized with 
2 / k 3 ;  0, time rate-of-change (term I); 0, turbulent transport (term 11); A, turbulent production 
(term 111); V, dissipation (term IV); D, diffusion (term V). 

with the principal axes of Si,, there will be production (or destruction) of vorticity 
components owing to stretching (or compression). In this case, the terms in (30) for 
i =t= j will vanish, and the interpretation of the remaining terms is clear. For an arbitrary 
coordinate system, the i + j  terms will not vanish, but the interpretation is the same, 
nonetheless. If, owing to a boundary condition, the principal axes of Sij tend to align 
with the coordinate system chosen (i.e. if the shear strains vanish), then the i + j  terms 
will vanish. 

For the flow in question, total fluctuating enstrophy balance (27) reduces to 
~ ~ 

(31) 
a wiwi - a wwiwi ~ awi awi a 2  w .  w .  
at 2 a Z  2 a 3 axjaxj a22 2 . 
-__ - + w . w .  s..- v--+ v-= 

- u - w L +  

I I1 I11 IV V 

The balance equation for the surface-parallel vorticity component iq is given by 

'71 i-y- - 
I I1 I11 IV V 

and that for the surface-normal component iw," is given by 

a,- a -  aw,aw, a 2  - 
--oz - -- ww; + 2(w, w, s,, i- w, wy S,,) + 2w, 0, s,, - 2v---+ 1,--2 (33) at aZ ax, ax, az2  z '  ++ \- LVJ 

I I1 I11 IV V 

In (32) and (33), a factor of two has been introduced. In this final equation, the 
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production terms involving the shear strains will be considered collectively, since they 
will be equal owing to the requirement of rotational symmetry for the statistics in 
planes parallel to the free surface. 

3.3.1. Terms of the ,fluctuating enstrophy balance 
The terms of the enstrophy balance (3 1) are shown in figure 13, where the terms have 

been normalized with ( C / L ) 3 .  In the centre portion of the domain, turbulent production 
makes a substantial positive contribution to i y i .  The rate of dissipation exceeds 
production and, as a result, the enstrophy level IS decaying. The viscous diffusion and 
turbulent transport are negligible in the core of the flow. As the shear-free boundary 
is approached. these terms become larger and there are significant changes in 
dissipation and diffusion. The region in which the deviations occur is thin, much 
thinner than the region in which the tangential vorticity fluctuations go to zero. The 
total enstrophy production level decreases by nearly 50 % as the surface is approached. 
There is a 7 5 %  increase in the dissipation rate at the surface. This increase in 
dissipation is partially offset by a near-surface gain in @iq owing to diffusion. 

3.3.2. Terms qf the tangential enstrophj> component hulancr 
- The behaviour of the terms of (32) the balance of the tangential vorticity fluctuations 
w:. is shown in figure 14(a). For : / L  3 0.2 the transport (term IT) and diffusion (term 
V) are zero and the variation in the remaining terms is small. The balance of at  the 
shear-free boundary reflects the zero-tangential-vorticity condition discussed above. 
Near the free surface there is a loss of owing to diffusion, with a maximum at 
approximately z / L  z 0.05. At the surface there is a significant gain in 3 owing to 
diffusion. Hence. the vanishing of tangential vorticity at the surface causes diffusive 
transport of G7 from points near the boundary to the boundary. The dissipation (term 
IV) and diffusion terms must balance at the boundary; hence. the transport of 3 to 
the boundary by diffusion is balanced locally by the dissipation. While this balance 
applies strictly only at the boundary, it appears that the variations in diffusion are 
balanced by the variations in dissipation near the boundary as well. The turbulent 
transport of exhibits a maximum near the surfiice which is the result of the large 
vertical gradient in the vorticity fluctuations near the boundary. Although the surface- 
normal - velocity fluctuations are small near the boundary, the large (negative) gradient 
in (,): will result in significant transport. The transport. however, must also be zero at 
the boundary. The production of 2 (term 111) is approximately uniform from 
z / L  z 0.6 to the centre of the domain. Between z / L  z 0.1 and z / L  z 0.6 the turbulent 
production is elevated by about I0 '4. Since the tangential vorticity on the boundary 
is zero, production must vanish there. Near the boundary the production approaches 
zero rapidly. 

It appears, then, that the level of the tangential enstrophy component near the 
surface is maintained by near-surface production. Turbulent transport and viscous 
diffusion move tangential enstrophy to the surface and here it is dissipated. 

The production term, decomposed into its components, is shown in figure 14(h). The 
production by stretching (Sxf) has a maximum near the surface, then decreases by 30 YO 
and is roughly constant for z /  L 3 0.1. The thin production region is smaller in extent, 
by approximately a factor of two, than the value of the lateral microscale associated 
with the tangential vorticity hgl,.. This is consistent with the observed reduction in 
longitudinal microscale A, at the shear-free boundary (shown in figure 5) ,  and the 
increase in normal-strain-rate fluctuations near the surface (shown in figure 8). The 
production term related to the Sri4 shear strains is the next major contributor to 3. As 
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FIGURE 14. Terms in (32), the tranvort equation for 2, and decomposition of the turbulent 
production term, normalized with B / k 3 ;  (a) terms in the transport equation for w:; 0, time rate-of- 
change (term I); 0, turbulent transport (term 11); A, turbulent production (term 111); v, dissipation 
(term IV); D, diffusion (term V); (b) decomposition of the turbulent production term; A, turbulent 
production; 0,  w,w,Szz; ., w,w,S,,; A, w,w,S,,. 

the free surface is approached, the production rises over the region z / L  “N 0.1-0.5, and 
has its maximum at the location where z peaks, before going to zero at the boundary, 
where w, = wy = 0. Significant shearing strains in the (x,y)-plane result when the in- 
plane principal strain rates are substantially different, such as in regions of stagnation, 
and tend to align the vorticity vector with the direction of the maximum (most positive) 
principal strain. The remaining production term is the production of z owing to the 
S,, shear strain. This term goes to zero as the surface is approached since S,, and w, 
are required to vanish at the surface. 

The increased production due to stretching (S,,) and shear in the (x, y)-plane (Sxu) 
can be explained in terms of simple physical models. The increased production of 
owing to stretching near the surface is due to the impact of fluid moving up from below 
on the free surface. This event is termed a ‘splat’ event by Leighton et al. (1991), based 
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on a description in Bradshaw & Koh (1981). When upward-moving fluid reaches the 
surface, the streamlines will diverge from a stagnation point and near-surface 
tangential vorticity will be stretched by the diverging flow. This intensification process 
is limited by viscous dissipation and diffusion. The production of 3 owing to S,, 
indicates that large shearing strains, typical of regions of stagnation, can occur in 
planes parallel to the free surface. In the discussion of figure 7 in $3.1.3, above, 
evidence was presented which indicated that there was increased correlation between 
the surface-parallel vorticity and velocity owing to the presence of the free-surface 
boundary. It was proposed that this resulted from mutual induction between surface- 
parallel vorticity and its 'image' above the free surface. A vortex filament moving due 
to this type of interaction will create regions of stagnation ahead of it, and behind it. 
This type of structure, therefore, could lead to production due to S,r!,. The lack of 
significant production due to S,<, indicates that near the surface, the local vorticity 
vector tends to be oriented either normal to the free surface, or parallel to the free 
surface. 

3.3.3. Terms of' the surjace-normal enstrophy component bulunce 
The terms of ( 3 3 ) ,  the 3 balance, are shown in figure 15(u). All terms are constant 

for z/ L 3 0.6, and are similar in magnitude to the tangential case, as would be expected 
for homogeneous, isotropic turbulence. Dissipation (term IV) varies only slightly as the 
surface is approached, and diffusion (term V) is near zero everywhere, since w," is nearly 
constant. This is due to the requirement that the surface-normal gradient of w,, rather 
than (0, itself vanish at the surface. The effect of the surface as observed in the 
production and transport terms extends to about ?/Id = 0.6, more than twice the lateral 
microscale. As the surface is approached, the turbulent production (term 111) decreases 
slightly to a local minimum at r /L  -2 0.2, and then increases to a maximum at the 
surface. The maximum is 50'4 larger than the production level far from the surface. 
The turbulent transport of 2 (term TI) is negative for 0 < z / L  d 0.1 and is then 
positive and decaying until z / L  -2 0.4. Far from the surface, the turbulent transport is 
zero, as expected since there is no gradient in 3. This implies that 2 is being 
transported from near the surface to a thin region below the surface. 

The production of 3 by shear is shown in figure 15(h) along with the term 
representing production of T,z by normal stretching. For z / L  3 0.7, 40% of the 
turbulent production of the correlation comes from stretching (SZz). This is the same 
as observed in the tangential components. As the free surface is approached, the 
production by shear decreases to zero. Again, this is a result of the shear-free nature 
of the boundary, where SJZ = S,, = 0 and ur = 0. The stretching term initially 
decreases. achieving a minimum a t  z / L  z 0.2. As the shear-free boundary is 
approached, production due to S,, increases; this indicates that the surface-normal 
vorticity is correlated with positive vertical velocities (away from the surface). It was 
noted above that the variations in production were roughly offset by the turbulent 
transport of (iz. This is because the same downward flow which contributes to the 
production of 3 through vortex stretching also transports 2 away from the surface. 
As a result the near-surface variations of these two terms can be expected to be 
substantially in balance. This indicates that the level of the mean-square surface- 
normal vorticity is largely unaffected by the free-surface boundary. 
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FIGURE 15. Terms in (33), the transport equation for z, and decomposition of the turbulent 
production term, normalized with P / k 3 ;  (a) terms in the transport equation for w:;  0, time rate-of- 
change (term I); 0, turbulent transport (term 11); A, turbulent production (term 111); 7, dissipation 
(term IV); D, diffusion (term ~~ V); (b) decomposition of the turbulent production term; A, turbulent 
production; 0 ,  o, o, Sz2; , w2 o, S,, + (wz wzI SzU. 

4. Summary and conclusions 
In this study the evolution of initially homogeneous and isotropic turbulence in the 

presence of a free surface was investigated. The purpose was to examine the interaction 
of turbulence with a free surface in the absence of mean velocity gradients, so that the 
interaction of the turbulence with the free surface could be separated from the 
interaction of the mean flow and the free surface. 

The Navier-Stokes equations were solved via direct pseudo-spectral simulation with 
a resolution of 963. The computational domain was a cube 4.25L on a side, where 
L = k / F 2  is the turbulent lengthscale where k and E are the volume-averaged 
turbulence kinetic energy and dissipation rate. Periodic boundary conditions were used 
in two dimensions, and the top and bottom sides of the domain were flat and shear- 
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free. A random, divergence-free velocity field with a prescribed spectrum was used as 
the initial conditions. After evolving for five time units, where time is normalized by 
the initial r.m.s. velocity and integral lengthscale, this 'base' velocity field was used to 
generate statistically independent velocity fields for an ensemble of sixteen separate 
simulations. This ensemble was allowed to evolve for an additional five time units. 
Statistics were then calculated by ensemble averaging and averaging over a short time 
(approximately half the ' eddy-turnover ' time). For the time period examined, the 
Reynolds number based on 

The time evolution of the base flow was examined and shown to be consistent with 
the theoretical results of Speziale & Bernard (1992) for the decay of isotropic 
turbulence. The palinstrophy coefficient was sufficiently high to ensure self-preserving 
behaviour if there were no boundaries present. The decay rate for the volume-averaged 
turbulence kinetic energy was I ~ ~ . " ~ ~ ,  slightly more rapid than the tpl behaviour 
predicted by the theory. The large decay rate for 2 near the surface may explain this 
small deviation from the theory. 

Near the surface, the Reynolds stresses are anisotropic, owing to the requirement 
that M' vanish at the surface. The anisotropy extends a distance from the surface 
roughly equal to L. The tangential vorticity fluctuations also vanish at the surface, 
owing to the no-shear condition. The reduction in tangential vorticity fluctuations at 
the surface results in a corresponding decrease in the enstrophy. The region in which 
the surface affects the vorticity distribution is roughly 0.1 L,  much thinner than the 
region of anisotropy for the velocity fluctuations. Examination of the velocity-vorticity 
correlations showed that there is significant interaction of tangential vorticity with the 
boundary. 

For the surface-normal velocity fluctuations, the pressure transport and the 
turbulent transport due to velocity fluctuations roughly balance and result in little net 
turbulent transport. The anisotropy level near the surface appears to be maintained by 
a reduction in dissipation for the tangential velocity fluctuations near the surface, a 
reduction in pressure-strain transfer from the larger tangential velocity fluctuations to 
the smaller surface-normal velocity fluctuations caused by the surface, and the rapid 
temporal decay of the surface-normal velocity fluctuations near the surface owing to 
the fact that the surface-normal velocity vanishes, while its dissipation rate remains 
finite. 

The turbulence kinetic energy rises in the near-surface region owing to a decrease in 
dissipation at the surface. This decrease in dissipation results from a local reduction in 
enstrophy. Near the free surface, the mean pressure rises, owing also to the reduction 
in enstrophy. The low-level enstrophy near the surface results from the requirement 
that its tangential component vanish at the surface. The level of tangential enstrophy 
in the near-surface region is maintained by the losses caused by diffusion and 
dissipation near the surface, and by the lack of production at the surface. 

The results of this study also indicate that, while the tangential vorticity must vanish 
at the free surface, the flow is fully three-dimensional up to the surface and that the 
production of surface-normal vorticity by vortex stretching (which is inconsistent with 
the idea of two-dimensional turbulence) attains a maximum at the free surface. The 
contribution to the total enstrophy by the surface-normal vorticity fluctuations 
remains relatively constant over depth, which is in contrast to the results of Gharib et 
af. (1 994). In the overall surface-normal enstrophy component balance the production 
due to vortex stretching is roughly balanced by turbulent transport of enstrophy away 
from the surface and so the level of surface-normal vorticity fluctuations remains 
relatively constant in space and decays uniformly on time. 

and Z was 147. 
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There is elevated production of tangential vorticity near the surface by vortex- 
stretching, and by the fluctuating shear strains. The former effect is due to tangential 
vorticity being affected by the normal strains associated with ‘splat’ events. The latter 
effect is associated with structures comprised of tangential vorticity moving parallel to 
the surface owing to mutual induction with their ‘images’. The stagnation regions 
ahead and behind these structures give rise to regions of high shear strain (in planes 
parallel to the free surface), and may result in large production of tangential vorticity 
by ‘ tilting ’. 
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